4.3 Concrete Waste Management

Description: Concrete waste at construction sites comes in two forms: 1) excess fresh concrete mix, including residual mix washed from trucks and equipment, and 2) concrete dust and concrete debris resulting from demolition. Both forms have the potential to impact water quality through stormwater runoff contact with the waste. The objective of concrete waste management is to dispose of these wastes in a manner that protects surface and ground water.

KEY CONSIDERATIONS

DESIGN CRITERIA:
- Prohibit the discharge of untreated concrete washout water
- Prohibit dumping waste concrete anywhere except at pre-determined, regulated, recycling or disposal sites
- Provide a washout containment with a minimum of 6 cubic feet of containment volume for every 10 cubic yards of concrete placed
- Minimum 1 foot freeboard on containment
- Minimum 10 mil plastic lining of containment
- Washout water evaporation and concrete recycling are the recommended disposal methods
- Educate drivers and operators on proper disposal and equipment cleaning procedures

LIMITATIONS:
- Does not address concrete sawcutting waste

MAINTENANCE REQUIREMENTS:
- Inspect regularly
- Check for and repair any damage to washout containment areas
- Clean up any overflow of washout pits
- Regularly remove and properly dispose of concrete waste

APPLICATIONS
- Perimeter Control
- Slope Protection
- Sediment Barrier
- Channel Protection
- Temporary Stabilization
- Final Stabilization
- Waste Management
- Housekeeping Practices

TARGETED POLLUTANTS
- Sediment
- Nutrients & Toxic Materials
- Oil & Grease
- Floatable Materials
- Other Construction Wastes

IMPLEMENTATION CONSIDERATIONS
- Capital Costs
- Maintenance
- Training
- Suitability for Slopes > 5%

Other Considerations:
- None
4.3.1 Primary Use
Concrete waste management is used to prevent the discharge of concrete wash water and waste into stormwater runoff. A number of water quality parameters can be affected by the introduction of concrete, especially fresh concrete. Concrete affects the pH of runoff, causing significant chemical changes in water bodies and harming aquatic life. Suspended solids in the form of both cement and aggregated dust are also generated from both fresh and demolished concrete waste.

4.3.2 Applications
Concrete waste management is applicable to all construction sites where existing concrete is being demolished or new concrete is being placed, regardless of the size of the total area disturbed. It is also applicable on repair and maintenance projects that may not be required to implement erosion and sediment controls.

4.3.3 Design Criteria
- The discharge of washout water to an inlet, swale, or any portion of the storm drainage system or a natural drainage system (e.g. channel) shall be prohibited.
- Construction plan notes shall state that the discharge of concrete washout to anything except a designated containment area is prohibited.
- Show the location of the concrete washout containment on the drawings, or require the contractor to provide this information.
- The contractor should be required to designate the site superintendent, foreman, or other person who is responsible for concrete placement to also be responsible for concrete waste management.

Unacceptable Waste Concrete Disposal Practices
- Dumping in vacant areas on the job-site.
- Illicit dumping onto off-site lots or any other placed not permitted to receive construction demolition debris.
- Dumping into ditches, drainage facilities, or natural water ways.
- Using concrete waste as fill material or bank stabilization.

Recommended Disposal Procedures
- Identify pre-determined, regulated, facilities for disposal of solid concrete waste. Whenever possible, haul the concrete waste to a recycling facility. Disposal facilities must have a Class IV (or more stringent) municipal solid waste permit from the TCEQ.
- A concrete washout pit or other containment shall be installed a minimum of 50 feet away from inlets, swales, drainage ways, channels, and other waters, if the site configuration provides sufficient space to do so. In no case shall concrete washout occur closer than 20 feet from inlets, swales, drainage ways, channels and other waters.
- Provide a washout area with a minimum of 6 cubic feet of containment volume for every 10 cubic yards of concrete poured. Alternatively, the designer may provide calculations sizing the containment based on the number of concrete trucks and pumps to be washed out.
- The containment shall be lined with plastic (minimum 10 millimeters thick) or an equivalent measure to prevent seepage to groundwater.
- Mosquitoes do not typically breed in the high pH of concrete washout water. However, the concrete washout containment should be managed in a manner that prevents the collection of other water that could be a potential breeding habitat.
Do not excavate the washout area until the day before the start of concrete placement to minimize the potential for collecting stormwater.

Do not discharge any water or wastewater into the containment except for concrete washout to prevent dilution of the high pH environment that is hostile to mosquitoes.

Remove the waste concrete and grade the containment closed within a week of completing concrete placement. Do not leave it open to collect stormwater.

If water must be pumped from the containment, it shall be collected in a tank, neutralized to lower the pH, and then hauled to a treatment facility for disposal. Alternatively, it may be hauled to a batch plant that has an onsite collection facility for concrete washout water.

Do not pump water directly from the containment to the Municipal Separate Storm Sewer System or a natural drainage way without treating for removal of fine particles and neutralization of the pH.

- Multiple concrete washout areas may be needed for larger projects to allow for drying time and proper disposal of the washout water and waste concrete.
- Portable, pre-fabricated, concrete washout containers are commercially available and are an acceptable alternative to excavating a washout area.
- Evaporation of the washout water and recycling of the concrete waste is the preferred disposal method. After the water has evaporated from the washout containment, the remaining cuttings and fine sediment shall be hauled from the site to a concrete recycling facility or a solid waste disposal facility.
- Remove waste concrete when the washout containment is half full. Always maintain a minimum of one foot freeboard.
- Use waste and recycling haulers and facilities approved by the local municipality.
- When evaporation of the washout water is not feasible, discharge from the collection area shall only be allowed if a passive treatment system is used to remove the fines. Criteria are in Section 3.7 Passive Treatment System. Mechanical mixing is required within the containment for passive treatment to be effective. The pH must be tested, and discharge is allowed only if the pH does not exceed 8.0. The pH may be lowered by adding sulfuric acid to the water. Dewatering of the collection area after treatment shall follow the criteria in Section 3.3 Dewatering Controls.
- Care shall be exercised when treating the concrete washout water for discharge. Monitoring must be implemented to verify that discharges do not violate groundwater or surface water quality standards.
- On large projects that are using a nearby batch plant, a washout facility associated with the plant and under the plant's TPDES Multi-Sector General Permit may be used instead of installing an onsite containment area for truck washout.

Education
- Drivers and equipment operators should be instructed on proper disposal and equipment washing practices (see above).
- Supervisors must be made aware of the potential environmental consequences of improperly handled concrete waste.

Enforcement
- The construction site manager or foreman must ensure that employees and pre-mix companies follow proper procedures for concrete disposal and equipment washing.
- Employees violating disposal or equipment cleaning directives must be re-educated or disciplined if necessary.
Demolition Practices

- Monitor weather and wind direction to ensure concrete dust is not entering drainage structures and surface waters.
- Spray water on structures being demolished to wet them before start of demolition operations. Reapply water whenever dust is observed.
- Construct sediment traps or other types of sediment detention devices downstream of demolition activities to capture and treat runoff from demolition wetting operations.

4.3.4 Design Guidance and Specifications

No specification for concrete waste management is currently available in the Standard Specifications for Public Works – North Central Texas Council of Governments.

4.3.5 Inspection and Maintenance Requirements

Concrete waste management controls should be inspected regularly (at least as often as required by the TPDES Construction General Permit) for proper handling of concrete waste. Check concrete washout pits and make repairs as needed. Washout pits should not be allowed to overflow. Maintain a schedule to regularly remove concrete waste and prevent over-filling.

If illicit dumping of concrete is found, remove the waste and reinforce proper disposal methods through education of employees.

4.3.6 Example Schematics

The following schematics are example applications of the construction control. They are intended to assist in understanding the control's design and function.

The schematics are not for construction. They may serve as a starting point for creating a construction detail, but they must be site adapted by the designer. In addition, dimensions and notes appropriate for the application must be added by the designer.
Figure 4.1 Schematics of Concrete Washout Containment

NOTE: SANDBAGS MAY BE REPLACED BY A SOIL BERM TO ANCHOR THE PLASTIC LINING.