3.4 Inlet Protection

Description: Inlet protection consists of a variety of methods to intercept sediment at low point inlets through the use of depressed grading, filter stone, filter fabric, inlet inserts, organic filter tubes and other materials. The protection devices are placed around or across the inlet openings to provide localized detention or filtration of sediment and floatable materials in stormwater. Protection devices may be assembled onsite or purchased as manufactured assemblies.

![Inlet Protection Diagram](image)

KEY CONSIDERATIONS

DESIGN CRITERIA:
- Evaluate drainage patterns to ensure inlet protection will not cause flooding of roadway, property or structures
- Never block entire inlet opening
- Size according to drainage area and flow rates
- Include flow bypass for clogged controls and large storm events

ADVANTAGES / BENEFITS:
- May be the only feasible sediment control when all construction is located within rights-of-way

DISADVANTAGES / LIMITATIONS:
- Limited effectiveness and reliability
- High maintenance requirements
- Has potential to flood roadways or adjacent properties

MAINTENANCE REQUIREMENTS:
- Inspect regularly
- Check for and remove blockage of inlet after every storm event
- Remove sediment before it reaches half the design height or volume of the inlet protection, more frequently for curb inlets
- Repair or replace damaged materials
- Clean or replace filter stone and organic filter tubes is when clogged with sediment

APPLICATIONS

- Perimeter Control
- Slope Protection
- Sediment Barrier
- Channel Protection
- Temporary Stabilization
- Final Stabilization
- Waste Management
- Housekeeping Practices

Fe=0.35-0.65
(Depends on soil type)

IMPLEMENTATION CONSIDERATIONS
- Capital Costs
- Maintenance
- Training
- Suitability for Slopes > 5%

Other Considerations:
- Traffic hazards
- Passage of larger storm events without causing flooding
- Flow diversion to other inlets or drainage points

TARGETED POLLUTANTS

- Sediment
- Nutrients & Toxic Materials
- Oil & Grease
- Floatable Materials
- Other Construction Wastes
3.4.1 Primary Use

Inlet protection is typically used as a secondary sediment barrier, due to its limited effectiveness and numerous disadvantages. It is used to reduce sediment in storm sewer systems by serving as a back-up system for areas that have newly applied erosion controls or for other sediment controls that cannot achieve adequate sediment removal by themselves.

Inlet protection may be used as a primary sediment control only when all other primary controls are infeasible because of site configuration or the type of construction activity.

3.4.2 Applications

Inlet protection is best applied at low point (sump) inlets where stormwater runoff will pond behind the protection measure, and then either filter through the protection measure or flow over a weir created by it. Most inlet protection measures depend on ponding to be effective. These types of inlet protection are not applicable to on-grade curb inlets, where the inlet protection will cause stormwater runoff to bypass the inlet and overload downstream inlets. Only inlet protection measures that allow for use of the inlet opening (e.g. inlet inserts) are applicable as inlet protection for on-grade inlets.

Inlet protection is normally used in new developments with new inlets and roads that are not in public use. It has limited applications in developed areas due to the potential for flooding, traffic safety, pedestrian safety, and maintenance problems. Potential applications in developed areas are on parking lot inlets where water can pond without causing damage and during major repairs to existing roadways where no other controls are viable.

The application of inlet protection is highly variable due to the wide variety of inlet configurations (existing and new) and site conditions. The schematics in Section 6 show example applications; however, applications in most cases must be site adapted. Different methods and materials may be used. It is the responsibility of the designer to ensure that the methods and materials applied for inlet protection are appropriate to the site and flow conditions following the design criteria in Section 3.

3.4.3 Design Criteria

General

- Drainage patterns shall be evaluated to ensure inlet protection will not divert flow or flood the roadway or adjacent properties and structures.
- Inlet protection measures or devices that completely block the inlet are prohibited. They must also include a bypass capability in case the protection measures are clogged.
- Inlet protection must be designed to pass the conveyance storm (25-year, 24-hour) without creating a road hazard or damaging adjacent property. This may be accomplished by any of the following measures:
 - An overflow weir on the protection measure.
 - An existing positive overflow swale on the inlet.
 - Sufficient storage volume around the inlet to hold the ponded water until it can all filter into the inlet.
 - Other engineered method.
- Positive overflow drainage is critical in the design of inlet protection. If overflow is not provided for at the inlet, temporary means shall be provided to route excess flows through established swales, streets, or other watercourses to minimize damage due to flooding.
- Filter fabric and wire mesh used for inlet protection shall meet the material requirements specified in Section 3.10 Silt Fence.
Block and gravel (crushed stone or recycled concrete) protection is used when flows exceed 0.5 cubic feet per second and it is necessary to allow for overtopping to prevent flooding.

The tube and filler for organic filter tubes shall be in accordance with the criteria in Section 3.6 Organic Filter Tube.

Bags used to secure inlet protection devices on pavement shall be filled with aggregate, filter stone, or crushed rock that is less likely than sand to be washed into an inlet if the bag is broken. Filled bags shall be 24 to 30 inches long, 16 to 18 inches wide, and 6 to 8 inches thick. Bags shall be polypropylene, polyethylene, or polyamide woven fabric with a minimum unit weight of 4 ounces per square yard and meet the following criteria:

Curb Inlet Protection

- Municipality approval is required before installing inlet protection on public streets.
- Special caution must be exercised when installing curb inlet protection on publicly traveled streets or in developed areas. Ensure that inlet protection is properly designed, installed and maintained to avoid flooding of the roadway or adjacent properties and structures.
- A two inch overflow gap or weir is required on all curb inlet protection devices.
- Traffic cones, warning signs, or other measures shall be installed to warn motorists when the inlet protection measures extend beyond the gutter line.
- 2 inch X 4 inch Weir Protection:
 - Bend wire mesh around the 2 inch x 4 inch board and staple to the board. Bend wire mesh around the bottom of the board, the curb opening, and along the pavement to form a cage for the rock.
 - Rock bags shall be placed perpendicular to the curb, at both ends of the wooden frame, to disrupt the flow and direct water into the rock filter. Stack the bags two high if needed.

- Organic Filter Tube Protection:
 - The diameter of the tube shall be at least 2 inches less than the height of the inlet opening. The tube should not be allowed to block the entire opening, since it will clog.
 - The tube shall be placed on 4 inch x 4 inch or 2 inch x 4 inch wire mesh to prevent the tube from sagging into the inlet.
 - The tube should be long enough to extend a minimum of 12 inches past the curb opening on each side of the inlet.

- Hog Wire Weir Protection:
 - The filter fabric and wire mesh shall extend a minimum of 12 inches past the curb opening on each side of the inlet.
 - Filter fabric shall be placed on 2 inch x 4 inch wire mesh to prevent the tube from sagging into the inlet.
 - Rock bags are used to hold the wire mesh and filter fabric in contact with the pavement. At least one bag shall be placed on either side of the opening, parallel to and up against the concrete curb. The bags are intended to disrupt and slow the flow and ensure it does not go under the fabric. Add bags if needed.
○ If a board is used to anchor the wire mesh and fabric instead of rock bags, the board shall be secured with concrete nails at 3 inches on center. Upon removal clean any dirt or debris from the nailing locations, apply chemical sanding agent, and apply non-shrink grout flush with surface of concrete.

• Block and Gravel Protection:
 ○ Concrete blocks shall be standard 8 inch x 8 inch x 16 inch concrete masonry units and shall be in accordance with ASTM C139, Concrete Masonry Units for Construction. Filter gravel shall be ¾ inch washed stone containing no fines. Angular shaped stone is preferable to rounded shapes.
 ○ Concrete blocks are to be placed on their sides in a single row around the perimeter of the inlet, with ends abutting. Openings in the blocks should face outward, not upward. ½ inch x ½ inch wire mesh shall then be placed over the outside face of the blocks covering the holes. Filter gravel shall then be piled against the wire mesh to the top of the blocks with the base of the stone being a minimum of 18 inches from the blocks.
 ○ Alternatively, where loose stone is a concern (streets, etc.), the filter gravel may be placed in appropriately sized filter fabric bags.
 ○ Periodically, when the gravel filter becomes clogged, the gravel must be removed and cleaned in a proper manner or replaced with new gravel and piled back against the wire mesh.

• Organic Filter Tube On-Grade Protection:
 ○ Organic filter tubes may be used to provide sediment control at on-grade curb inlets where the tube will not be a traffic hazard, such as on residential streets where the pavement adjacent to the curb is allocated to parked cars. Tubes should not be used in this manner where they will extend into an active travel lane.
 ○ The filter tube shall be secured in a U-shape by rock bags. Runoff flowing in the gutter will pond within the U until it filters through the tube or overflows around the end.

• Inlet protection shall be phased on curb inlets being constructed. Controls shall be installed on the pipe inlet at the bottom of the catch basin as soon as it is installed and while the inlet box and top are being formed or placed.

Area Inlet Protection

• Installation methods for protection on area inlets vary depending on the type of inlet (drop, “Y,” or other) and the type and use of the surface surrounding the inlet (parking lot, playground, etc.). It is the responsibility of the designer to appropriately adapt inlet protection measures and their installation methods for each site condition. Several types may be needed on one project.

• Filter Fabric Protection:
 ○ Filter fabric protection is appropriate where the drainage area is less than one acre and the basin slope is less than five (5) percent. Filter fabric, posts, and wire mesh shall meet the material requirements specified in Section 3.10 Silt Fence.
 ○ A 6 inch wide trench is to be cut 6 inches deep at the toe of the fence to allow the fabric to be laid below the surface and backfilled with compacted earth or gravel. This entrenchment prevents any bypass of runoff under the fence.
 ○ Stone overflow structures, according to the criteria in Section 3.10 Silt Fence shall be installed where flow to the inlet is concentrated and more than 1 cubic feet per second.

• Excavated Impoundment Protection:
 ○ Excavated inlet protection is usually the most effective type of area inlet protection; however, it is only applicable to drop inlets. It should not be applied to Y inlets because it will undermine the concrete pad surrounding the inlet opening. Nor can it be used for inlets on pavement.
○ With this protection method, it is necessary to install weep holes to allow the impoundment to drain completely.
○ The impoundment shall be sized such that the volume of excavation is equal to or exceeds the runoff volume from the temporary control design storm (2-year, 24-hour) for the inlet’s drainage area.
○ The trap shall have a minimum depth of one foot and a maximum depth of 2 feet as measured from the top of the inlet and shall have side slopes of 2:1 or flatter.

- Block and Gravel Protection:
 ○ Block and gravel inlet protection is the most stable area inlet protection and can handle more concentrated flows. It may be installed on paved or vegetated surfaces. Loose stone shall be carefully removed from vegetated surfaces at the end of construction to prevent the stone from becoming a mowing hazard.
 ○ The inlet protection may be one or two blocks high. Single block heights are applicable for drainage areas up to 3 acres in size. The double block height shall be used for larger drainage areas.
 ○ Concrete blocks shall be standard 8 inch x 8 inch x 16 inch concrete masonry units and shall be in accordance with ASTM C139, Concrete Masonry Units for Construction. Filter gravel shall be ¾ inch washed stone containing no fines. Angular shaped stone is preferable to rounded shapes.

- Organic Filter Tube Protection:
 ○ Organic filter tubes may be used on paved or unpaved surfaces.
 ○ On paved surfaces, tubes shall be secured in place by rock bags. On unpaved surfaces, the tubes shall be embedded in the ground a minimum of 3 inches and staked at 4 foot spacing.
 ○ Designer shall provide calculations and specify the diameter of tube to be used based on the inlet’s drainage area and the flow rate of runoff to the inlet. The minimum allowable diameter is 12 inches.

Proprietary Inlet Protection

- Numerous proprietary protection devices are available from commercial vendors. The devices often have the advantage of being reusable on several projects if they are maintained in good condition.
- It is the policy of this manual not to recommend any specific commercial vendors for proprietary controls. However, this subsection is included in order to provide municipalities with a rationale for approving the use of a proprietary inlet protection device within their jurisdiction.
- The designer shall work with the supplier to provide the municipality with flow calculations or independent third-party tests that document the device’s performance for conditions similar to the ones in which it is proposed to be installed. The conditions that should be considered include: type and size of inlet, inlet configuration, size of contributing drainage area, design flow rate, soil particle sizes to be removed, and other pollutants to be removed.
- The designer or vendor of the proprietary device shall provide a minimum of three references for projects where the device has been installed and maintained in operation at a construction site for at least six months. Local references are preferred; but references from other regions can be accepted if a similarity between the reference project and the proposed application can be demonstrated.
- Proprietary devices must not completely block the inlet. The device shall have a minimum of a 2 inch wide opening for the length of the inlet when it will be used in areas that water can safely pond to depths deeper than the design depths for the inlet. If ponding is not an option, then the device must have overflow capacity equal to the inlet design flow rate.
- Some proprietary devices are available with replaceable pads or filters. These pads or filters have the added benefit of removing pollutants such as metals and oils in addition to removing sediment.
These types of inserts are recommended in applications where prior or current land use in or adjacent to the construction areas may result in the discharge of pollutants.

- Proprietary protection devices shall be in accordance with the General criteria at the beginning of this section and any criteria listed under Curb Inlet Protection and Area Inlet Protection that are not specific to an inlet protection method.

3.4.4 Design Guidance and Specifications

Specifications for construction of this item may be found in the Standard Specifications for Public Works Construction – North Central Texas Council of Governments, Section 201.15 Inlet Protection.

3.4.5 Inspection and Maintenance Requirements

Inlet protection should be inspected regularly (at least as often as required by the TPDES Construction General Permit). Inlet controls should also be inspected after every storm event to check for collapse into the inlet or other damages that may block flow in the inlet. In addition to routine inspection, inlet protection devices should be observed and monitored during larger storm events to verify that they are not ponding or diverting water in a manner that floods a roadway or damages property.

Floatable debris and other trash caught by the inlet protection should be removed after each storm event. Sediment should also be removed from curb inlet protection after each storm event because of the limited storage area associated with curb inlets.

Sediment collected at area inlet protection should be removed before it reaches half the height of the protection device. Sediment should be removed from inlets with excavated impoundment protection before the volume of the excavation is reduced by 50 percent. In addition, the weep holes should be checked and kept clear of blockage.

Concrete blocks, 2 inch x 4 inch boards, stakes, and other materials used to construct inlet protection should be checked for damaged and repaired or replaced if damaged.

When filter fabric or organic filter tubes are used, they should be cleaned or replaced when the material becomes clogged. For systems using filter stone, when the filter stone becomes clogged with sediment, the stones must be pulled away from the inlet and cleaned or replaced.

Because of the potential for inlet protection to divert runoff or cause localized flooding, remove inlet protection as soon as the drainage area contributing runoff to the inlet is stabilized. Ensure that all inlet protection devices are removed at the end of the construction.

3.4.6 Example Schematics

The following schematics are example applications of the construction control. They are intended to assist in understanding the control’s design and function.

The schematics are not for construction. They may serve as a starting point for creating a construction detail, but they must be site adapted by the designer. In addition, dimensions and notes appropriate for the application must be added by the designer.
Figure 3.5 Schematics of 2" x 4" Weir Curb Inlet Protection
(Source: Modified from Washington Suburban Sanitary Commission Detail SC-16.0)

Inlet Protection
April 2010, Revised 9/2014
Figure 3.6 Schematics of Organic Filter Tube Curb Inlet Protection
(Source: Modified from City of Plano BMP SP-4)

NOTE: THIS CONTROL WILL DECREASE THE CAPACITY OF THE INLET. IT SHALL ONLY BE USED WHEN AN ENGINEER HAS DETERMINED THERE IS ADEQUATE STORAGE OR POSITIVE OVERFLOW.
Figure 3.7 Schematics of Hog Wire Weir Curb Inlet Protection
(Source: Modified from City of Round Rock Detail E-03)

NOTE: THIS CONTROL WILL DECREASE THE CAPACITY OF THE INLET. IT SHALL ONLY BE USED WHEN AN ENGINEER HAS DETERMINED THERE IS ADEQUATE STORAGE OR POSITIVE OVERFLOW.
Figure 3.8 Schematics of Block and Gravel Filter Curb Inlet Protection

NOTES:
1. DO NOT INSTALL ON INLETS IN A PUBLIC STREET OR OTHER ACTIVE TRAVEL LANE. BLOCK AND GRAVEL FILTER IS INTENDED FOR USE ON LOW POINT (SUMP) INLETS IN PARKING LOTS AND OTHER PAVEMENT THAT IS NOT AN ACTIVE TRAVEL LANE. THIS INLET PROTECTION METHOD ALLOWS FOR FULL USE OF THE INLET DESIGN CAPACITY.
2. INSTALL TRAFFIC CONES AS NEEDED TO MINIMIZE THE POTENTIAL FOR CARS HITTING THE BLOCK AND GRAVEL.
Figure 3.9 Schematic of Organic Filter Tube On-Grade Curb Inlet Protection

NOTES: 1. THIS DETAIL IS INTENDED FOR USE WITH ON-GRADE INLETS (NOT A LOW POINT) WHERE WATER WOULD BE DIVERTED INSTEAD OF PONDING BEHIND THE OTHER TYPES OF INLET PROTECTION.
2. DO NOT INSTALL ON INLETS WHERE THE ORGANIC FILTER TUBE WOULD EXTEND INTO AN ACTIVE TRAVEL LANE.
Figure 3.10 Schematics of Filter Fabric Area Inlet Protection
(Source: City of Plano BMP SP-4)
Figure 3.11 Schematics of Excavated Impoundment Area Inlet Protection

- **Excavated Impoundment Drop Inlet Protection Cross Section**
 - EXCAVATED AREA = DESIGN STORM VOLUME OR 3,600 CF PER ACRE DISTurbed
 - FILTER STONE (1/2"x1/2") FOR COVERING WEEP HOLES
 - 2:1 MAX SLOPE
 - 1" DIA. WEEP HOLES, TO BE FILLED WITH GROUT PRIOR TO BACKFILLING OF STORAGE AREA
 - 1" MIN, 2" MAX

- **Excavated Impoundment Area Inlet Protection Plan View**
 - 1 1/2" FILTER STONE
 - DROP INLET GRATE
 - FLOW
Figure 3.12 Schematics of Block and Gravel Area Inlet Protection
(Source: Modified from City of Plano BMP SP-4)
Figure 3.13 Schematics of Organic Filter Tube Area Inlet Protection