3.15 Vegetated Filter Strips and Buffers

Description: Buffer strips (existing vegetation) and filter strips (planted vegetation) are sections of vegetated land adjacent to disturbed areas. They are designed with low slopes to convey sheet flow runoff from disturbed areas, resulting in the removal of sediment and other pollutants as the runoff passes through vegetation and infiltration occurs.

KEY CONSIDERATIONS

DESIGN CRITERIA:
- Minimum width (direction of flow across the vegetation) dependent on slope of disturbed area
- Maximum ratio of disturbed area to vegetated area dependent on slope
- Existing vegetation must meet criteria for type and coverage
- Dense grass required for planted vegetation
- Demarcate limits of vegetation and protect from traffic

ADVANTAGES / BENEFITS:
- Effective secondary control for removing clay particles
- Disperses flow and slows velocities to decrease erosion potential in receiving water
- Preserves the character of existing riparian corridor
- May become part of the permanent stormwater controls

DISADVANTAGES / LIMITATIONS:
- Appropriate as a primary control only for drainage areas of 2 acres or less and under certain site conditions
- Maximum 150 feet of flow to vegetated strip or buffer is used as a primary control
- Cannot treat large volumes or concentrated flows
- Not effective as a perimeter control when the perimeter cuts across contours instead of following contours
- Must limit access to vegetated portion of the site

MAINTENANCE REQUIREMENTS:
- Inspect regularly
- Rake accumulations of sediment from the vegetation
- Repair bare areas

APPLICATIONS

- Perimeter Control
- Slope Protection
- Sediment Barrier
- Channel Protection
- Temporary Stabilization
- Final Stabilization
- Waste Management
- Housekeeping Practices

TARGETED POLLUTANTS
- Sediment
- Nutrients & Toxic Materials
- Oil & Grease
- Floatable Materials
- Other Construction Wastes

IMPLEMENTATION CONSIDERATIONS

- Capital Costs
- Maintenance
- Training
- Suitability for Slopes > 5%

Other Considerations:
- Coordination with final landscaping

Fe=0.35-0.85
(Expands on many conditions in addition to soil type)
3.15.1 Primary Use
Vegetated filter strips and buffers are used to reduce the velocity of sheet flow and reduce the volume of runoff through infiltration. In the process, sediment is removed as the runoff is filtered through the vegetation and infiltration occurs.

Vegetated filter strips and buffers are frequently used a secondary sediment control, since their performance is highly variable. They may be used as a primary sediment control only for small areas and under select site conditions.

3.15.2 Applications
Vegetated buffers are most applicable on development projects that are adjacent or near to floodplains, wetlands, streams and other natural waterways. Vegetated strips may be established along roads and property lines as a perimeter control for development. They are also applicable along the down slope side of utility line projects.

Vegetated buffers may be a primary sediment control for small areas where the conditions meet design criteria. They are also commonly used as a secondary control with other perimeter controls to provide higher levels of sediment removal. Vegetated areas have more capability to remove fine particle sizes than many conventional sediment controls. Combinations such as an organic filter tube or silt fence at the upslope edge of a vegetated strip are very effective.

In addition to perimeter control, vegetated strips are applicable for slope protection. Strips may be established at regular intervals to interrupt long or steep slopes. The strips maintain sheet flow, decrease velocities, and decrease erosion on the slopes.

3.15.3 Design Criteria
Vegetated buffers should be preserved along existing floodplains, wetlands, channels, and other natural waters whenever possible, even when the buffer is not a primary sediment control. Check for local requirements, as many municipalities mandate a vegetated buffer to maintain the character of the riparian corridor along a natural waterway. Vegetated buffers are encouraged to protect existing waterways by decreasing velocities, dispersing flow, and attenuating volume before the runoff reaches the waterway. If the development plans necessitate disturbing the riparian corridor, phase the development (when possible) to retain a vegetated buffer until final grading and landscaping at the end construction.

The evaluation and use of vegetated strips and buffers for use as a sediment control are unique to each site. The designer should carefully consider slope, vegetation, soils, depth to impermeable layer, depth to ground water, and runoff sediment characteristics before specifying a vegetated strip or buffer as a primary sediment control. This consideration is especially true for buffer strips of existing vegetation. If the buffer is not correctly planned, the first storm event can damage the natural vegetation beyond repair.

Design criteria in this section are only applicable when a vegetated strip or buffer is intended to be a primary or secondary sediment control for the construction site. As discussed above, a vegetated buffer may be preserved for other reasons that do not necessitate the use of these criteria if other sediment controls are provided for the construction site.

General
- Maximum slope of the vegetated strip or buffer shall be 5% across the width of the vegetation in the direction of flow.
- To maintain sheet flow, maximum distance of flow to the vegetated filter shall be 150 feet.
- Vegetated buffers and strips may only serve as a primary sediment control when the contributing drainage area has a slope of 15% or less. On steeper slopes, another perimeter control (e.g. organic filter tube, silt fence) may be installed at the upslope edge of the vegetated buffer or strip as a primary control, with the vegetation serving as a secondary control.
• Maximum disturbed area contributing runoff to the vegetated strip or buffer shall be 2 acres.

• Vegetated filter strips and buffers shall be a minimum of 15 feet wide. Width shall be increased based on the slope of the disturbed area as shown in the following table. Although the slope of the disturbed area may be up 15%, the slope of the vegetated strip or buffer is still limited to 5% maximum if used as a primary control for sediment.

<table>
<thead>
<tr>
<th>Maximum Slope of Contributing Drainage Area</th>
<th>Maximum Ratio of Disturbed Area to Vegetated Area</th>
<th>Minimum Width of Vegetated Area (Direction of Flow)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5%</td>
<td>8:1</td>
<td>15 feet</td>
</tr>
<tr>
<td>10%</td>
<td>5:1</td>
<td>30 feet</td>
</tr>
<tr>
<td>15%</td>
<td>3:1</td>
<td>50 feet</td>
</tr>
</tbody>
</table>

• Access to vegetated buffers and strips shall be prohibited. These areas shall be protected from all traffic. No activities should occur in these areas, including no parking of the workers’ vehicles, no eating of lunch, etc.

• Install controlled and stabilized ingress/egress points to manage traffic and direct it away from vegetation. Fence the vegetation or provide other means of protection to prevent vehicles and equipment from driving on the vegetated areas.

• Vegetated buffers and filter strips should not be used when high ground water, shallow depth to bedrock, or low soil permeability will inhibit infiltration of runoff.

Buffers of Existing Vegetation

• Fencing, flagged stakes spaced at a maximum of 6 feet, or other measures shall be used to clearly mark existing vegetation that is being preserved as a buffer before the start of any clearing, grubbing, or grading.

• Existing vegetation must be well established to be used as a vegetated buffer. It may be a mix of trees, sapling/shrubs, vines and herbaceous plants. However, the herbaceous plants shall cover at least 80 percent of the ground area.

• Bare soil shall not be visible within the buffer. Area between herbaceous plants shall be covered with a natural litter of organic matter (e.g. leaves, dead grass).

• Lots with a thick stand of existing grasses may preserve strips of the grasses as perimeter control in addition to using vegetation as a buffer along a natural waterway.

Strips of Planted Vegetation

• Vegetated strips should only be used when the site perimeter is along (parallel to) contours. Erosion of the vegetated strip will be a problem when the strip is placed along roads or site perimeters that cut across contours, resulting in runoff flowing along, instead of across, the filter strip.

• Minimize vehicle and equipment traffic and other activities that could compact soils on areas that will be planted for vegetated strips.

• Sod is required when the strip is intended to immediately function as a sediment control.

• Erosion control blankets (ECBs) should be used to prevent erosion and provide sediment control while establishing vegetation for a filter strip. If ECBs are not used, than another perimeter control is required until the vegetation is mature. Refer to Section 2.3 Erosion Control Blankets.

• Refer to the Section 2.9 Vegetation for criteria on establishing vegetation.

• When using vegetated strips for slope protection, spacing of the strips should be designed based on...
Vegetated Filter Strips and Buffers

3.15.4 Design Guidance and Specifications

Guidance for analysis of the hydraulic loading on filter strips is in Section 13.3 of the Stormwater Controls Technical Manual.

No specification for vegetated filter strips and buffers is currently available in the Standard Specifications for Public Works Construction – North Central Texas Council of Governments.

3.15.5 Inspection and Maintenance Requirements

Vegetated filter strips and buffers should be inspected regularly (at least as often as required by the TPDES Construction General Permit). If rill erosion is developing, additional controls are needed to spread the flow before it enters the vegetated area. Rake light accumulations of sediment from the vegetation. Remove trash that accumulates in the vegetation. Additional sediment controls (e.g. a line of organic filter tubes or silt fence), are needed if sediment accumulations are large enough to bury the vegetation.

Inspect established planted vegetation for bare areas and place sod or install seeded erosion control blankets, as appropriate. Mow as needed after planted vegetation is mature.

3.15.6 Example Schematics

The following schematics are example applications of the construction control. They are intended to assist in understanding the control’s design and function.

The schematics are not for construction. They may serve as a starting point for creating a construction detail, but they must be site adapted by the designer. In addition, dimensions and notes appropriate for the application must be added by the designer.
Figure 3.35 Schematics of Vegetated Filter Strip

Vegetated Filter Strips and Buffers
April 2010, Revised 9/2014