2.10 Velocity Dissipation Devices

Description: Velocity dissipation devices control erosion by dispersing concentrated flow and slowing flow velocities at drainage pipe outlets, the outlet end of an armored flume or swale, and other points where concentrated flow is discharged to an open channel. Velocity dissipation devices are also called energy dissipaters. They may consist of crushed rock, rock riprap, gabions, and other non-erosive materials.

KEY CONSIDERATIONS

DESIGN CRITERIA:
- Use at discharge points into unlined and natural channels where the flow velocity exceeds 4 fps during construction
- Install permanent energy dissipaters in the first phase of construction when possible to eliminate the need for temporary devices
- Design based on discharge rate and velocity for the temporary control design storm (2-year, 24-hour)

ADVANTAGES / BENEFITS:
- Protects habitat in natural channels
- Protects new conveyance systems from damage due to erosion until permanent controls are installed

DISADVANTAGES / LIMITATIONS:
- Additional cost for temporary structures
- May be damaged by larger storm events

MAINTENANCE REQUIREMENTS:
- Inspect regularly
- Repair damaged devices and eroded areas
- Replace dislodged rock

APPLICATIONS

- Perimeter Control
- Slope Protection
- Sediment Barrier
 - Channel Protection
 - Temporary Stabilization
 - Final Stabilization
- Waste Management
- Housekeeping Practices

Fe=N/A

IMPLEMENTATION CONSIDERATIONS

- Capital Costs
- Maintenance
- Training
- Suitability for Slopes > 5%

Other Considerations:
- Coordination of temporary structures with the plans for permanent infrastructure

TARGETED POLLUTANTS

- Sediment
- Nutrients & Toxic Materials
- Oil & Grease
- Floatable Materials
- Other Construction Wastes
2.10.1 **Primary Use**
Velocity dissipation devices are used to disperse concentrated flow and slow velocities to a point where they will not cause erosion in a vegetated or natural drainage way. In the process of slowing the flow, suspended sediments in runoff from disturbed areas may be removed from the runoff and settle in the dissipation device.

2.10.2 **Applications**
Velocity dissipation devices are used where velocities in concentrated flow may cause erosion of un-lined or natural channels during construction. These locations are typically where a constructed conveyance system (such as a storm drain pipe, concrete flume, or roadside drainage ditch) discharges flow to a channel that is larger in size or lower in elevation.

2.10.3 **Design Criteria**

General
- Temporary velocity dissipation devices should be installed at pipe outlets and similar discharge points during construction to maintain the downstream physical and biological characteristics and functions until channel protection and stabilization measures are installed. Other points that may require velocity dissipaters are locations where concrete flumes, drainage swales, roadside ditches, and other drainage structures discharge to an unlined or natural channel.
- The design and use of velocity dissipation devices during construction should be coordinated with the stormwater infrastructure design in the development plans. It is recommended that permanent devices be constructed early in the first phase of construction to provide velocity dissipation both during and post-construction, thus eliminating the need for temporary devices.
- The criteria in this section are specific to **temporary** velocity dissipation devices that are designed using the temporary control design storm (2-year, 24-hour). The design of permanent dissipation devices shall be in accordance with the municipality’s drainage design criteria and are more stringent.
- Temporary dissipation devices must not block flow or cause flooding during larger storm events.
- Temporary dissipation devices shall be installed on all outlets where the design storm velocity exceeds 4 feet per second and the discharge is to an unlined or natural channel.

Rock Riprap
- Rock riprap is the most common material used for temporary velocity dissipation. The rock may be removed and re-used for other applications when permanent drainage structures, channel lining, or final stabilization measures are installed.
- Design calculations are required for the use of this control. The designer shall provide drainage computations, discharge velocity, stone size, and apron dimensions for each application.
- Rock may be natural stone or recycled concrete.
- The stone shall be well graded from 2 inch diameter through the median diameter (d_{50}) and up to the maximum diameter (d_{MAX}). The stone should create a homogeneous stone surface with no voids larger than 1½ inches in diameter.
- Stone shall be sized using the criteria for riprap aprons in *Section 4.0 of the Hydraulics Technical Manual* or using an alternative method accepted by the municipality reviewing the plans. The median stone size (d_{50}) shall be a minimum of 6 inches for temporary velocity dissipation. The maximum stone size (d_{MAX}) shall be 1.5 times d_{50}.
- Minimum depth of the riprap apron shall be 1.5 times d_{MAX}.
• Minimum length of the apron shall be 4.5 times the outlet pipe diameter or equivalent for other types of outlets.
• Minimum width of the apron shall be 4.0 times the outlet pipe diameter or equivalent for other types of outlets.
• Riprap should be placed on a lining of filter fabric to prevent soil movement into or through the riprap. The perimeter of the filter fabric must be keyed into the ground a minimum of 6 inches.
• Riprap apron should be aligned with flow direction.
• Riprap shall not be used where there is a difference in elevation between the outlet and the receiving channel.

Other Devices

• Articulating concrete blocks, gabions, stilling basins or manufactured velocity dissipaters may be used for velocity dissipation if the designer provides calculations that document size and dimensions of the device for the design storm flow rate and velocities.

• Temporary baffled chutes, gabion drop structures, or other stabilized grade breaks shall be installed where an elevation difference exists at the outlet until permanent structures are installed.

2.10.4 Design Guidance and Specifications

Criteria for the design of permanent design velocity dissipation devices are in Section 3.6.3 of the iSWM Criteria Manual, and additional design guidance is in Section 4.0 of the Hydraulics Technical Manual. Guidance is also available in the Federal Highway Administration Engineering Circular No. 14, Hydraulic Design of Energy Dissipaters for Culverts and Channels.

Specifications for construction of this item may be found in the Standard Specifications for Public Works Construction – North Central Texas Council of Governments, Item 803, Slope and Channel Protection.

2.10.5 Inspection and Maintenance Requirements

Discharge points shall be inspected regularly (at least as often as required by the TPDES Construction General Permit) for evidence of downstream erosion. Repair dislodges or missing rock riprap. The development of head-cuts, the deepening or widening of the channel, or low flow channels developing within the main channel are all evidence that additional velocity dissipation measures are required until permanent structures are installed.

2.10.6 Example Schematics

The following schematics are only applicable to temporary installations of riprap for velocity dissipation. Permanent installations shall be in accordance with the municipality’s design criteria.

The schematics are not for construction. They may serve as a starting point for creating a construction detail, but they must be site adapted by the designer. In addition, dimensions and notes appropriate for the application must be added by the designer.
Figure 2.13 Schematics of Velocity Dissipation Device
(Source: Modified from Oklahoma City Public Works Engineering Division Detail ERO-A17)